

PROGRESS REPORT MILLENNIUM SCIENCE COMPLEX

KGB Maser's Team Goal

Reducing the cost of the structural system will provide the necessary funding for energy efficient upgrades which is anticipated to produce life cycle savings.

FAÇADE REDESIGN

DISTRIBUTION SYSTEMS

CANTILEVER REDESIGN

COST & SCHEDULE PROGRESS

Existing Thickness to Space: 22.90 inches

Existing R Value: 36.73

FAÇADE REDESIGN

DISTRIBUTION SYSTEMS

CANTILEVER REDESIGN

COST & SCHEDULE PROGRESS

2" additional layer of insulation

Proposed Façade Thickness to Space: 24.88 inches

Proposed R Value: 51.45

NEGLIGIBLE ENERGY IMPACT

FAÇADE REDESIGN

DISTRIBUTION SYSTEMS CANTILEVER

REDESIGN

COST & SCHEDULE PROGRESS

GSky Green Wall System rendered on the East façade of the Life Science wing and South façade of the Material Science wing

FAÇADE REDESIGN

DISTRIBUTION SYSTEMS

CANTILEVER REDESIGN

COST & SCHEDULE PROGRESS

Isometric specification of Green Wall application to concrete wall

Green Wall Section

FAÇADE REDESIGN

DISTRIBUTION SYSTEMS

CANTILEVER REDESIGN

FAÇADE	SCENADI	0	ENVELOPE LOADS	PRIMARY HEATING ENERGY	PRIMARY COOLING ENERGY	AUXILARY ENERGY	
REDESIGN	JULIAA	0	% Decrease	% Decrease	% Decrease	% Decrease	
DISTRIBUTION		3'	0.02	0.00	0.01		
		3.5'	0.04	0.01	0.02		
REDESIGN	DEPTHS		0.05	0.03	0.02		
COST &		2.5'	0.11	0.01	0.04	Negligible	
	IMPROVED GLAZING +	3'	0.12	0.01	0.04		
FROORLSS	REVEAL DEPTHS	3.5'	0.14	0.03	0.05		
		4'	0.15	0.06	0.05		

FAÇADE	SCENARI	0	HTG OPERATING SAVINGS	CLG OPERATING SAVINGS	TOTAL ENERGY SAVINGS	PERCENT OF OPERATING COST
REDESIGN	Jerrin and		\$/yr	\$/yr	\$/yr	%
DISTRIBUTION	VADVINC	3'	0	\$182.10	\$182.10	0.25%
	REVEAL	3.5'	\$552.84	\$364.20	\$917.04	1.25%
REDESIGN		4'	\$1,658.52	\$364.20	\$2,022.72	2.75%
COST &		2.5'	\$552.84	\$728.40	\$1,281.24	1.74%
	IMPROVED GLAZING + REVEAL DEPTHS	3'	\$552.84	\$728.40	\$1,281.24	1.74%
PROGRESS		3.5'	\$1,658.52	\$910.50	\$2,569.02	3.50%
		4'	\$3,317.04	\$910.50	\$4,227.54	5.75%

4

DISTRIBUTION **SYSTEMS**

CANTILEVER REDESIGN

COST & SCHEDULE PROGRESS

				Panel	Width	Bri	ck Height at Flang	je Flange Depth				
						Panel Heig	5 ³ /4"	Return Depth	Brick Depth at F	Return Thickness		
		\bullet		Panel F	-ront		2 1/4"	Sectior	ן ז Panel Re	ear		
	Procest Papel	Dimonsio	inc.		Self Weight Cl	eeck Uprig	ht		Solf Woight	Chack Prost	trate	
	Panel Height	141.125	ilin.	4'	Weight/in.	169.0749	ILb./in.	<u> </u> '	Weight/in.	9.625	lb./in.	(factore
	Panel Depth	5	in.	1 '	Inertia of Panel	2261764	lin.4		Inertia of Strip	125	in.4	lucion
	Brick Depth at Face	2	lin.	+ ,	Moment	1464624	Ib.in.		Moment	18836.44	lb.in.	1
	Flange Height	5.75	in.	1 '	Stress	45.69331	psi.	ок	Stress	376.7289	psi.	ок
	Brick Height at Flange	2.25	in.	1,		,						
	Flange Depth	27.6875	in.	1/	Planter Gravity (Check Upri	ght		Planter Gravit	y Check Pro	state	
	Panel Width	263.25	in.	1	Weight/in.	170.6821	lb./in.		Weight/in.	10.79167	lb./in.	(factore
	Return Thickness	6	in.	1	Inertia of Panel	2261764	in.4		Inertia of Strip	125	in.4	<u> </u>
	Return Depth	20.6875	in.	1	Moment	1478546	lb.in.		Moment	21119.65	b.in.	
	Return Height	129.625	in.	1	Stress	46.12767	psi.	ОК	Stress	422.393	psi.	ОК
	Volume Concrete	162.3634	, ft.3									
	Weight Concrete	24354.51	lb.	1	Wind Check	k On Face			Cantilever Check of	on Flange Se	elf Weight	
	Volume Brick	61.9801	. ft.3	/	Weight/in.	4.249333	lb./in.		Weight/in.	11.01042	lb./in.	
	Weight Brick	7437.612	lb.	/	Inertia of Strip	125	in.4		Inertia of Flange	190.1094	in.4	
(factored)	Total	44508.98	lb.	'	Moment	10578.86	lb.in.		Moment	2356.079	lb.in.	
(factored)	Total with Planters	44932.07	lb.	'	Stress	211.58	psi.	ОК	Stress	35.63068	psi.	
		′		1		'						
	Wind Force	4'			Wind Check (On Flange		L				
(factored)	50.992 psf.	_ '		/	Weight/in.	24.98697	lb./in.					
					Inertia of Flange	8121.797	in.4	!				_
		<u> </u> '			Moment	216451.3	lb.in.	!		Crackin	ig Stress	4
				'	Stress	342.2946	psi.	ОК		477.2971	psi	(factor

Shading is integrated into electric lighting delivery

FAÇADE REDESIGN

Shading, electric lighting, controls, and geometry are combined in the central Revit file

FAÇADE REDESIGN

DISTRIBUTION SYSTEMS

CANTILEVER REDESIGN

Shading, electric lighting, controls, and geometry are combined in the central Revit file

FAÇADE REDESIGN

DISTRIBUTION SYSTEMS

CANTILEVER REDESIGN

Family types are modeled and photometrics added for rendering ability in Revit Architecture

FAÇADE REDESIGN

DISTRIBUTION SYSTEMS

CANTILEVER REDESIGN

Revit formats are exported to AutoCAD formats and imported into lighting analysis software

FAÇADE REDESIGN

DISTRIBUTION SYSTEMS

CANTILEVER REDESIGN

Revit formats are exported to AutoCAD formats and imported into lighting analysis software

FAÇADE REDESIGN

DISTRIBUTION SYSTEMS

CANTILEVER REDESIGN

Chilled beams will be zoned to allow for application throughout the Millennium Science Complex

FAÇADE REDESIGN DISTRIBUTION

SYSTEMS

CANTILEVER REDESIGN

Dual energy recovery at Lab AHUs will deliver neutral air to interior lab spaces and ACBs will provide cooling

Trane TRACE outputs have given preliminary estimates of quantity and performance of chilled beams

FAÇADE REDESIGN	ROOM	NUMBER OF CHILLED BEAMS	CAPACITY OF BEAMS IN ROOM BTUH	DESIGN CHW INLET TEMP DEG F	DESIGN CHW OUTLET TEMP DEG F	PRIMARY AIRFLOW TO ROOM CFM
DISTRIBUTION SYSTEMS	sp-N-237A	4	8331	61.2	65.2	206
CANTILEVER	sp-N-301	4	6925	61.2	65.2	171
REDESIGN	sp-N-303	4	6925	61.2	65.2	171
COST &	sp-N-316	2	3055	61.2	65.2	75
SCHEDULE	sp-N-324A	4	8168	61.2	65.2	202
TROGRESS	sp-N-328A	4	8493	61.2	65.2	210

3 Different cases for fume hood energy have been identified for energy and CFD analysis

FAÇADE
REDESIGNCase 1: Existing VAV Fume Hoods - 100/125 fpmDISTRIBUTION
SYSTEMSCase 2: Low Flow VAV Fume Hoods - 80 fpmCANTILEVER
REDESIGNCase 2: Low Flow VAV Fume Hoods - 80 fpmCOST &
SCHEDULE
PROGRESSCase 3: Constant Volume Hoods

Cellular members will provide pre-cut voids through which branch ducts will snake to the rooms

FAÇADE	CELLULAR BE	AM INFORM				LOADIN	g infor	RM			EXPAND	'D. SXN. F	ROP'S	
	Job Name	TEST				Uniform	Distribut	ed	Loads		Avg. wt.	44.00	plf	
REDESIGN	Beam Mark #	LB1			Live Load	2640	plf		Pre-comp %	0%	Anet	8.89	in^2	
	Span	22.000	ft		Dead Load	1056	plf		Pre-comp %	85%	Agross	16.16	in^2	
	Spac. Left	11.000	ft			Concent	trated Po	int	Loads		lx net	1772	in^4	
DISTRIBUTION	Spac. Right	11.000	ft		Load #	Magnitude	Dist fro	m	Percent DL	Percent	lx gross	2032	in^4	
CVCTERAC	Mat. Strength-Fy	50 💌	ksi	_	(#)	(kips)	Lft. End	(ft)	(%)	Pre-Comp.	lx critical	1847	in^4	
SYSTEIVIS	Cellular Beam	LB30X44		-	P1	0.00	0.00		0%	0%	Min Sx net	118	in^3	
	Root Beams (T/B)	W21X44	W21X4	4	P2	0.00	0.00		0%	0%	Min Sx gross	135	in^3	
	d	20.66	20.66	;	P3	0.00	0.00		0%	0%	Min Sx critical	123	in^3	
CANTILEVER	bt	6.5	6.5		P4	0.00	0.00	_	0%	0%	rx min	11.22	In	
	U	0.45	0.45			COMPOS		JR				21	10"4	
REDESIGN	tw	0.35	0.35	_	Concrete & De	ck:	1	_	Shear Studs:		Sy net	6.35	in^3	
		ARAMETER	S:		conc. strength - f	c' (psi)	3000	_	stud dia. (in)	3/4"	COMPOS	TE SXN.	PROP'S	
COCT 9	Min. Hole Diameter	15.69	in		conc. wt wc (po	cf)	115	•	stud ht. (in)	5	n	13.577		
CUSI &	Max. Hole Diameter	27.44	in		conc. above dec	k - tc (in)	3 1/4		studs per rib	1	beffec.	66.000	in	
	STD Hole Diameter Do	20.75	in 🔒	¥	rib height - hr (in))	3		composite %	100% 💌	Actr	15.799	in^2	
SCHEDULE	STD Hole Spacing S	29.250	in 🔒	¥	rib width - wr (in)		6		STUD SF	ACING:	N.A. ht.	27.275	In Steel	
DDOCDESS	Web Post Width "e"	8.500	in						N=50,Unifo	ormly Dist.	ltr	4186	in^4	
PRUGRESS	S / Do	1.41			R	ESULTS			WARN	INGS	leffec.	4186	in^3	
	Gross Depth "dg"	30.12	in		Failure Mode	Interaction	Status				Sxconc	459.967	in^3	
	dg / Do	1.452			Bending	0.763	ок				Sxsteel	153.462	in^3	
	Cutting Loss	0.910			Web Post	0.719	ок				CONSTRU	CTION BI	RIDGING	
	dt top	4.687	in		Shear	0.537	ок				End Connecti	on type	Double clip 💌	
	dt bot	4.687	in		Concrete	0.322	ОК				Min. No. Of Brid	dging Rows	0	
					Pre-Comp.	0.537	ОК				Max. Bridging.	Spacing (ft)	38	
					Overall	0.763	OK							
				DEFLE	CTION				sina " Do " & " S	Fine	d Lightest			
	CIDC CMC S	teel Prod	icts		Pre-Composite	e Deflection	0.109		=L/2426		Cel		ular Beam	
					Live Load D	eflection	0.146	0.146 =L/1812			to help sheet			

Cellular members will provide pre-cut voids through which branch ducts will snake to the rooms

FAÇADE REDESIGN

DISTRIBUTION SYSTEMS

CANTILEVER REDESIGN

C S P

N	SPAN	Lx	Ly	t	w	Wslab	Wbeams	NODE	Wi	Δ	Wi.∆^2	Ρ.Δ	Tcalc	T(SAP)	Vel			fn
		ft	ft	in	ksf	kip	kip		kip	in		P=100 k	sec	sec	μ in/sec			Hz
	SPAN-A	22.0	22.0	33	0.049	23 619	3 872	1	0.524	0.0013	0 0000	160 6674	0.0604		3075	Mod Walkir	0.0	16.6
	U ANA	22.0	22.0	0.0	0.043	20.010	3.012	2	0.893	-0.0175	0.0003	100.0014	0.0004		3073	WOO WARKIN	19	10.0
- d	lue to load	at A13						3	0.893	-0.0295	0.0008							
								4	0.893	-0.0175	0.0003							
								5	0.524	0.0013	0.0000							
2								A1	0.893	0.0470	0.0020							
								A2	1.631	0.0640	0.0067							
								A3	1.631	0.0981	0.0157							
								A4	1.631	0.0640	0.0067							
								A5	0.893	0.0470	0.0020							
								A6	0.893	0.0773	0.0053							
								A7	1.631	0.1908	0.0594							
								A8	1.631	0.2487	0.1009							
								A9	1.631	0.1908	0.0594							
								A10	0.893	0.0774	0.0054							
								A11	0.893	0.0525	0.0025							
								A12	1.631	0.6123	0.6116							
								A13	1.631	1.6067	4.2105							
								A14	1.631	0.6122	0.6113							
								A15	0.893	0.0526	0.0025							
								A16	0.524	0.0050	0.0000							
								A17	0.893	0.0907	0.0073							
								A18	0.893	0.1352	0.0163							
								A19	0.893	0.0905	0.0073							
								A20	0.524	0.0050	0.0000							
	SPAN-B	22.0	22.0	3.3	0.049	23.619	3.179	A16	0.496	0.0012	0.0000	152.4988	0.0572		2714	Mod Walkir	ng	17.5
								A17	0.865	-0.0046	0.0000							
- d	lue to load	at B13						A18	0.865	-0.0075	0.0000							
								A19	0.865	-0.0046	0.0000							
								A19	0.865	-0.0046	0.0000							

A base electrical analysis model has been created for system performance analysis

Components include mechanical equipment supplying the third floor

MCB-MDS-02B FAÇADE MDS-02B REDESIGN BCB-ATS-HC2N DISTRIBUTION BCB-ATS-HS4N BCB-ATS-HS2N **SYSTEMS** 800NGATSHS4 1100NGATS-HC2 1100NG ATS-HS2 CANTILEVER REDESIGN COST & ATS-HS4 SCHEDULE PROGRESS ATS-HC2 ATS-HS2

This model will be changed to reflect chilled beam additions later in the semester

FAÇADE REDESIGN DISTRIBUTION SYSTEMS CANTILEVER REDESIGN

COST & SCHEDULE PROGRESS

Cantilever Support Redesign Brainstorm

Developing Color Schemes And Nest Layout

FAÇADE REDESIGN DISTRIBUTION SYSTEMS CANTILEVER REDESIGN

COST & SCHEDULE PROGRESS

View From Project North East

FAÇADE REDESIGN DISTRIBUTION SYSTEMS

CANTILEVER REDESIGN

COST & SCHEDULE PROGRESS

View From Project North West

The Cantilever Redesign will save money, space in the penthouse, and provide an interesting place to light

Breaking down the full schedule into different categories for the 4D model.

FAÇADE REDESIGN DISTRIBUTION SYSTEMS CANTILEVER REDESIGN COST &

SCHEDULE PROGRESS

Activity	OD	FS	FF	TE				
Description	00	23			d a la al 1	2008	2009	-
I-PILES/INITIAL STORM & SAN					AAIMIJ			1
TION FOR MINI-PILES								1
MOBILIZE EXCAVATOR	2	03NO/08	04NOV08	1		III IMO	BILIZE EXCAVATOR	
MS (BB-Q) EXCAVATE FOR MINI PILES	10	05NO/08	20NOV08	1			(BB-Q) EXCAVATE FOR M	IŅ
NORTH (Q-A) H-PILES FOR SHEETING & SHORING	6	10NO/08	18NO/08	0		 	DRTH (Q-A) H-PILES FOR SH	ΙĘ
WEST (1-12) H-PILES FOR SHEETING & SHORING	6	20NO/08	02DEC08	0		P	EST (1-12) H-PILES FOR SH	ιĘ
MS/AW (Q-J) EXCV/SHEET/SHORE FOR MINI PILES	12	24NO/08	12DEC08	0		🖬	IS/AW (Q-J) EXCV/SHEET/\$	H
WEST (12-15) H-PILES FOR SHEETING & SHORING	3	03DEC08	05DEC08	0		l iv	VEST (12-15) H-PILES FOR S	ŝĦ
AW/LS (J-A/1-12) EXCV/SHEET/SHORE FOR MINI PILES	12	15DEC08	06JAN09	8			AW/L\$ (J-A/1-12) EXCV/SH	ΙĘΪ
LS (12-20) EXCV/SHEET/SHORE FOR MINI PILES	15	07JAN09	30JAN09	19			■1+\$ (12+20) EXCV/\$HEET/	sŀ
PILES			-	-				-
MS S1 (BB-WW) Mini-Piles	20	15DEC08	19JAN09	0			MS S1 (BB-WW) Mini-Piles	s ¦
Areaway/Core Mini-Piles (1ST HALF)	30	07JAN09	26FEB09	9			Areaway/Core Mini-Pile	s
MS S2 (WW-R) Mini-Piles	20	20JAN09	23FEB09	0			Mini-Pile	es
LS S1 Mini-Piles	20	02FEB09	06MAR09	19			LS \$1 Mini-Piles	
MS S3 (R-L) Mini-Piles	20	24FEB09	30MAR09	0			M\$ \$3 (R-L) Mini-Pile	s
Areaway/Core Mini-Piles (2ND HALF)	30	27FEB09	20APR09	9			Areaway/Core Mini	-P
LS S2 Mini-Piles	20	09MAR09	10APR09	19			LS S2 Mini-Piles	i

SIPS scheduling can reduce the longevity of highly repeatable spaces and construction types

FAÇADE REDESIGN DISTRIBUTION SYSTEMS CANTILEVER REDESIGN COST & SCHEDULE PROGRESS

3D site logistics modeling and 4D modeling will help visualize the construction process

REDESIGN DISTRIBUTION SYSTEMS CANTILEVER REDESIGN

FAÇADE

3D site logistics modeling and 4D modeling will help visualize the construction process

Excel spreadsheets and takeoffs from Revit will help when is comes to last minute changes

FAÇADE REDESIGN DISTRIBUTION SYSTEMS CANTILEVER

COST & SCHEDULE PROGRESS

REDESIGN

Structural Fram	ning Schedule										
Туре 🔟	Length_unitles 💌	Unit 💌	Volume 🔻	Unit 💌	Weight_ton 💌	🛛 Unit 💌	Materia 💌	Labo 💌	Equipmen 🔻	Tota 💌	Unit
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	13.500648	LF	1.43	CF	0.370814	TONS	37	2.43	1.36	40.79	LF
W24X55	8.499352	LF	0.81	CF	0.233446	TONS	37	2.43	1.36	40.79	LF
W24X55	8.499352	LF	0.88	CF	0.233446	TONS	37	2.43	1.36	40.79	LF
W24X55	13.500648	LF	1.43	CF	0.370814	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	11	LF	1.15	CF	0.30213	TONS	37	2.43	1.36	40.79	LF
W24X55	11	LF	1.14	CF	0.30213	TONS	37	2.43	1.36	40.79	LF
W24X55	11	LF	1.14	CF	0.30213	TONS	37	2.43	1.36	40.79	LF
W24X55	11	LF	1.15	CF	0.30213	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	LF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	LF
W24X55	22	IF	2.43	CF	0.60426	TONS	37	2.43	1.36	40.79	I IF

KGB Maser's Next Steps

- Finalize façade changes based on overall cost impacts
- Architecturally develop courtyard beneath cantilever
- Advance mechanical and electrical distribution systems
- Continue detailed estimate of structural, mechanical and lighting systems
- Frequently coordinate team designs
- Integrate prefabrication and SIPS scheduling of office and lab spaces

Questions?

Space	Area (ft²)	Allowable LPD (W/ft ²)	Allowable Power (W)	Total Power Used (W)	Actual LPD (W/ft ²)
Study Area	825.0	1.2	990.0	657.0	0.796
Corridor	657.9	0.5	329.0	224.0	0.681*

	Illuminance Summary												
Space	Illu	minance	(fc)	Max /Min	Cooff Of Variation	Uniformity Gradient							
Space	Min.	Avg.	Max.	IVIAX./ IVIII I.									
Study Area	90	36 5	106.0*	11 73	0.47	2 /7							
Only	5.0	00.0	100.0	11.75	0.11	2.71							
Corridor	45	9 36	10.8	2 40	0.15	1 31							
Only	т.0	5.00	10.0	2.40	0.10	1.01							
Student Area	15.0	34 3	55.0	3.67	0.27	1 /2							
Combined	10.0	04.0	00.0	0.07	0.21	1.72							
Corridor	73	20.0	25.3	3.47	0.23	1 38							
Combined	7.5	20.0	20.0	5.47	0.20	1.50							

